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This paper presents a novel battery health management technology for the new 

generation of electric unmanned aerial vehicles powered by long-life, high-density, scalable 

power sources. Current reliability based techniques are insufficient to manage the use of 

such batteries when they are an active power source with frequently varying loads in 

uncertain environments. The technique presented here encodes the basic electrochemical 

processes of a Lithium-polymer battery in an advanced Bayesian inference framework to 

simultaneously track battery state-of-charge as well as tune the battery model to make 

accurate predictions of remaining useful life. Results from ground tests with emulated flight 

profiles are presented with discussions on the use of such prognostics results for decision 

making. 

Nomenclature 

  = battery voltage 

   = voltage drop 

  
 = theoretical output voltage 

x = state variable 

y = measurement 
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t = time 

   = time delay between consecutive discrete time staps 

  = model parameter 

I. Introduction 

ITH electric UAVs (unmanned aerial vehicles) we are witnessing the dawn of a new era in aviation. They are 

being increasingly deployed in military, civilian and scientific missions all over the globe. However, like 

ground vehicles, battery powered electric UAVs suffer from uncertainties in estimating the remaining charge and 

hence most flight plans are highly conservative in nature. The amount of usable charge of a battery for a given 

discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery 

health and the discharge or load profile imposed. This is because in most battery powered propulsion systems, the 

battery shut off criteria are based on the terminal voltage. This voltage is related to the SOC of the battery, but it is a 

highly non-linear relation, which is further complicated by a sharp drop off of the terminal voltage as the battery 

SOC nears empty. This problem is more pronounced in battery powered electric UAVs since different flight regimes 

like takeoff/landing and cruise and changing environmental factors like wind velocity impose different power 

requirements and a dead stick condition (battery shut off in flight) can have catastrophic consequences. 

In this paper, a detailed battery discharge model is presented for the Lithium-polymer (Li-Poly) cells and verified 

using ground tests of the Edge 540, a subscale aerobatic UAV powered by four 18.5V 6000mAh Li-Poly battery 

packs. This model was then used in a Particle Filter based prognostic framework to accurately predict the remaining 

useful life (RUL) for the batteries. Particle Filters are a class of Sequential Monte Carlo methods that not only use 

the information available from system measurements but also incorporate any models available for system behavior. 

This technique also has the ability to tune non-stationary model parameters simultaneously with state estimation, 

which combined with the representation of state space as multiple weighted particles, makes it ideal for state 

tracking and prediction. Given stochastic estimates of future usage, the RUL estimates generated can facilitate 

intelligent flight plan reconfiguration, which can be vital in assuring system safety. Some initial results were 

published earlier
1
; this paper is intended as the next step in the approach presented. The main contributions of this 

paper are the advances in battery modeling and the statistical evaluation of prognostic performance.  

II. UAV Platform 

The test UAV platform for this research is a COTS 33% scale model of the Zivko Edge 540T as shown in Fig. 

Figure 1. Details of this platform have been presented in
1
, but are also repeated here for the sake of readability. The 

UAV is powered by dual tandem mounted electric out-runner motors capable of moving the aircraft up to 85 knots 

using a 26 inch propeller. The gas engine in the original kit specification was replaced by two electric out runner 

motors which are mounted in tandem to power a single drive shaft. The motors are powered by a set of 4 Li-Poly 

rechargeable batteries.  The batteries are each rated at 6000 mAh. The tandem motors are each controlled by 

separate motor controllers. 

The battery health management (BHM) system is 

designed to be a relatively low cost analog-to-digital 

data acquisition system. There are three major elements 

to the BHM system - a signal conditioning board, an 

analog-to-digital acquisition board, and an embedded 

processor board.  There are 12 channels of data (4 

battery voltages, 4 battery currents, and 4 battery 

temperatures) to be recorded at rates up to 30 samples 

per second. The signal conditioning board processes the 

analog sensor signals for the analog-to-digital 

acquisition board.  The analog-to-digital acquisition 

board feeds the processed signal data into an embedded 

processor board running a Gumstix Overo(™) 

computer-on-module (COM) system, where the data are fed into the battery prognostics algorithm.  The battery 

prognostic algorithm leverages POSIX threading for speed and efficiency. Finally the embedded processor board 

outputs the battery prognostics algorithm results on an RS-232 data stream. 

W 

 
Figure 1. ⅓-scale Edge 540 UAV.  
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III. Battery Modeling 

The characteristics of a Li-Poly battery have also been explained in
1, 2

. For the purposes of this paper it will 

suffice to say that the internal chemical processes of the battery were broken down into three basic electrochemical 

processes: 

Mass transfer: This refers to the diffusion process through which Li-ions migrate to the cathode via the 

electrolytic medium. The internal resistance to this ionic diffusion process is also referred to elsewhere as the IR 

drop.
2
 For a given load current this drop usually decreases with time due to the increase in internal temperature that 

results in increased ion mobility, and is henceforth referred to as     . 

Self-discharge: Self-discharge is caused by the residual ionic and electronic flow through a cell even when there 

is no external current being drawn. The resulting drop in voltage has been modeled to represent the activation 

polarization of the battery, referred to from now on as     . All chemical reactions have a certain activation barrier 

that must be overcome in order to proceed and the energy needed to overcome this barrier leads to the activation 

polarization voltage drop. The dynamics of this process is described by the Butler–Volmer equation. This process 

was represented by an exponential function in
1
. However, a log function is a more accurate representation, as 

abstracted from the Butler–Volmer equation.
3
 

Reactant depletion: This process represents the voltage loss due to spatial variations in reactant concentration at 

the electrodes. This is mainly 

caused when the reactants are 

consumed by the 

electrochemical reaction faster 

than they can diffuse into the 

porous electrode, as well as due 

to variations in bulk flow 

composition. The consumption 

of Li-ions causes a drop in their 

concentration as along the cell, 

which causes a drop in the local 

potential near the cathode.
3
 This 

voltage loss is also referred to 

as concentration polarization, 

represented in this paper by  the 

term     . The value of this 

factor is low during the initial 

part of the discharge cycle and grows rapidly towards the end of the discharge or when the load current increases. 

An exponential function is used to represent this process. 

Thus the overall voltage of the battery, as shown by the polarization curve in Fig. Figure 2, is given by the 

equation: 

                                (1) 

where   is the time variable during a discharge cycle and    is the Gibbs free energy, i.e. the theoretical outut 

potential for the given chemistry. The variations in    with internal temperature are not explicitly modeled, but 

accounted for by the adaptive powers of the prognostic framework described later. For a constant current discharge 

case, the individual voltage drops are modeled based on empirical evidence as follows: 

                 (2) 

                    (3) 

                   (4) 

where      indicates the change in the IR drop due a change in load current. The parameters      are unknowns that 

must be learnt by the prognostic algorithm.   

However, it must be noted that in the case of the electric UAV, as in most other battery-powered applications, 

the load is not constant. Figure 3 shows a typical flight profile of the UAV indicating that typical flight loads are 

 
Figure 2. Typical polarization curve of a battery.  
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short pulses of widely differing current 

levels or C-Rate. Additionally, for most 

batteries the voltage as well as the charge 

delivered, varies considerably with 

changes in the C-Rate.
3
  

This necessitates two changes to the 

battery model described by Eqs. (2)–(4). 

Firstly, the parameters of the model must 

be C-Rate or load dependent. We model 

this by making     ,   , and    

proportional to the load current  .  

Secondly, when we have step changes in 

the load, a higher load level followed by a 

lower one presents a peiod of relaxation 

for the battery. During this period the 

voltage does not immediately jump up as 

per Eqn (2), but gradually rises which can 

be modeled by an exponential function.
6
 A 

similar effect can also be observed for a 

step increase in current level as can be 

seen in Figure 4. These effects can be 

reconciled by considering the battery 

impedance as an RC equivalent circuit.
4
 We can thus replace the      term by the       

 and       
terms as 

follows: 

      
                             (5) 

      
         (6) 

where    is the step change in current at time    . The model parameters are now expressed as  s. Similarly, Eqs. 

(3) and (4) can be rewritten as: 

                     (7) 

                    (8) 

Thus the overall battery voltage equation, represented earlier by Eq. (1) now becomes: 

              
          

                    (9) 

IV. Prognostic Framework 

To ensure that the model works well, the model’s parameters need to be properly identified and tuned. Tuning 

needs to be done on an individual basis because generic parameters do not take into consideration the differences 

between different batteries or even the differences that appear between cycles of operation of the same battery. 

Indeed, parameter values may change even within a single cycle as the battery goes through the range of SOC. 

Tracking a state variable and predicting future values can be cast as a filtering problem. There is a large literature 

body delineating different filtering techniques where each techniques sports certain  performance advantages over 

others. In battery prognostics we are interested in predicting EOD (end-of-discharge) and EOL (end-of-life). Here, 

we need to reconcile non-exact, non-linear non-stationary models with non-Gaussian noise and future load 

uncertainties.  

A Particle Filtering (PF) based framework provides the capabilities for tracking and future state prediction.  At 

the same time, it allows the explicit representation and management of these uncertainties. Particle Filters are non-

linear filters that have the promise of good state tracking performance
5
 by combining Bayesian learning techniques 

with importance sampling. At the same time, the computational load remains tractable. System states (such as 

 
Figure 3. Typical flight load profile for the UAV.  
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battery SOC, voltage or capacity) are represented as probability density functions (pdf) that are approximated by a 

set of points (the so-called “particles”). These represent sampled values from the unknown state space. The particles 

have a set of associated weights that denote discrete probability masses. The particles are generated from an a priori 

estimate of the state pdf. They are propagated through time via a nonlinear process model, and they are recursively 

updated from measurements through a measurement model. Model parameters can be included as a part of the state 

vector to be tracked. This means that model identification can be performed in conjunction with state estimation.
6
 

When the model has been tuned to sufficiently reflect the specific system dynamics, it can then be used to propagate 

the particles forward to the failure threshold which it crosses as a pdf. In case of battery prognostics, the failure 

threshold is either EOD or EOL. The difference of the time at which the particle filter crosses the failure threshold 

minus the time at which the prediction is made is the RUL.
6
 It should be noted that the RUL is also expressed as a 

pdf. 

For the application at hand, the EOD estimation problem needs to be expressed in the PF framework, for which 

the battery discharge model represented by Eqn (8) has to be recast in the discrete-time state-space form. The first 

step in that process in to define the state variables,   s: 

         
    (10) 

         
    (11) 

           (12) 

           (13) 

                  (14) 

 

Thus, differentiating w.r.t. time we get: 

   

  
             

(15) 

   

  
     

(16) 

   

  
 

      

   
  

  

 
(17) 

   

  
       

(18) 

   

  
  

   

  
 

   

  
 

   

  
 

   

  
 

(19) 

Transforming into the discrete time domain, integrating over the time interval       between two time instants 

     and   , and adding noise terms, we get the following state-space form: 

          
           

            
 

(20) 

                    (21) 

              
      

  

            
(22) 

                         (23) 
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                                  (24) 

where   is the discrete time index and       is a zero-mean Gaussian random noise. Note that we are not 

assuming that the system noise is Gaussian, but merely that in the Particle Filtering framework the distribution 

approximated by the Gaussian kernels over each particle is sufficient to represent the true state pdf. As mentioned 

before, it is critical in health management applications to adapt the model parameters to a changing system. In the 

context of this paper, this corresponds to making all the   terms additional state variables to be tracked. Since this 

would significantly increase the state-space dimension, thus making the filtering problem intractable, we take the 

approach of identifying the   terms from testing data. However, a sensitivity analysis of the model shows that small 

changes in the parameters    and    have a significant effect on the battery voltage variable   , hence we include 

them in our state vector                         
 . The state transition logic for the parameters is simply chosen 

to be a Gaussian random walk around the initial starting point learnt from data: 

                  (25) 

                 
 (26) 

Ideally, one would track the internal impedances as an indicator for battery depletion, This would necessitate 

making measurements from which those impedances can be estimated. However, measurement techniques, like 

electrochemical impedance spectroscopy (EIS), are somewhat impractical for onboard deployment. Instead, most 

battery powered systems use a cut-off based on battery voltage instead of a cut-off based on SOC. In addition, the 

relation between terminal voltage and SOC, as given by the manufacturer, does not hold throughout the full life of 

the battery or under extreme load and temperature conditions. It is therefore advantageous for the prediction tasks to 

track the variable on which system EOL is determined and we are therefore using terminal voltage,     , as an 

indicator of battery life instead of the SOC. Thus, our measurement equation becomes: 

                (27) 

where      is also a zero-mean Gaussian noise sample.  

V. Prediction Results 

Testing on the Edge 540 UAV 

platform was carried out with the airframe 

restrained on the ground. The propeller 

was run through various RPM (revolutions 

per minute) regimes indicative of the 

intended flight profile (takeoff, climb, 

multiple cruise, turn, and glide segments, 

descent and landing). Figure 4 shows the 

voltages during a typical flight. It is 

desired to predict when the battery will 

run out of charge. i.e. the EOD event 

indicated by the end of the voltage plots 

after landing. 

In order to evaluate the prognostic 

algorithm we make multiple predictions at 

the time instants 13, 15, 17 and 19 

minutes. It is not desired to make 

predictions till the end of the flight since 

there needs to be some tme for the UAV 

pilot to land the aircraft with some safety 

margin on the remaining battery life. One 

example prediction is shown in Figure 5, where the prediction is made 13 minutes into the flight. The predicted 

 
Figure 4. Battery voltages during a typical flight.  
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mean trajectories for the battery voltages are shown by dotted lines. The plot shows good correlation between the 

predictions and the actual voltages with an accurate and precise (narrow) EOD pdf at the end. Since the PF 

algorithm need to fit the parameters    and    from the measured data, predictions earlier than 13 minutes do not 

show good convergence.  

In order to better quantify the prognostic performance, we calculate the     performance metric
7
 for the 

prediction means computed as the weighted sum of the particle populations. The   metric indicates the allowable 

prediction error, while the   metric denotes the 

fraction of remaining life by which the 

prediction accuracy must be achieved. For our 

case, we arbitrarily select   to be  0.1 (10% 

error) and   to be 0.5 so that we have about 

4.5 mins left to perform remedial actions (it 

takes 2 mins to land the UAV). A more formal 

specification of the prognostic performance 

requirements is desired, and is under research. 

For the sake of statistical significance 100 

prediction runs are made and all the 

trajectories are plotted as shown in Figure 6. 

The cone with the vertex at 21.85 on the x-axis 

represents the 10% error bounds for RUL. The 

blue lines represent 100 prediction runs. As an 

aggregate they can be said to fall within the 

10% error cone with about 4.5 minutes of 

remaining life left (indicated by the vertical 

dashed line), thus passing the     

performance criteria. Further improvements in 

the prognostic algorithm, either in the model 

 
Figure 6. Predicted battery voltages with prediction means shown in dotted lines.  
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Figure 5. α-λ performance of the PF prognostic framework. 
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or in the model adaptation, can help bring the  prediction trajectories further within the accuracy cone.   

   

VI. Conclusion 

In summary, this paper expands on the novel battery health management technique for application onboard an 

electric UAV presented in
1
. This technique is also readily applicable to small satellites as well as electric vehicles 

(EVs) on the ground. For over a century now the main hurdle preventing EVs from making the transition to mass 

adoption has been the uncertainty of running out of battery power on the road. A model-based battery health 

management approach that is adaptive to environmental as well as system changes, and is capable of producing a 

battery life prediction output in a pdf form that can be easily integrated into a Bayesian decision making process, is 

therefore crucial to the success of such battery-powered systems.  

In the specific case of UAVs, by creating power profiles for different flight regimes like cruis, turns and 

landings, we can estimate the mission completion or success probability by calculating the RUL cumulative 

distribution (cdf) after the intended mission end time. If this value is not 1, i.e.100% success probability, then it can 

motivate and inform mission replanning activity based on the tradeoff between the amount of risk (1 – success 

probability) allowed by the operator and the cost of curtailing the mission. The PF prognostic framework can also be 

used to evaluate the effectiveness of possible mitigation actions, thus acting as a simulation testbed for advanced 

contingency management technologies. 
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